5 research outputs found

    Statistical inference framework for source detection of contagion processes on arbitrary network structures

    Get PDF
    In this paper we introduce a statistical inference framework for estimating the contagion source from a partially observed contagion spreading process on an arbitrary network structure. The framework is based on a maximum likelihood estimation of a partial epidemic realization and involves large scale simulation of contagion spreading processes from the set of potential source locations. We present a number of different likelihood estimators that are used to determine the conditional probabilities associated to observing partial epidemic realization with particular source location candidates. This statistical inference framework is also applicable for arbitrary compartment contagion spreading processes on networks. We compare estimation accuracy of these approaches in a number of computational experiments performed with the SIR (susceptible-infected-recovered), SI (susceptible-infected) and ISS (ignorant-spreading-stifler) contagion spreading models on synthetic and real-world complex networks

    FastSIR Algorithm: A Fast Algorithm for simulation of epidemic spread in large networks by using SIR compartment model

    Full text link
    The epidemic spreading on arbitrary complex networks is studied in SIR (Susceptible Infected Recovered) compartment model. We propose our implementation of a Naive SIR algorithm for epidemic simulation spreading on networks that uses data structures efficiently to reduce running time. The Naive SIR algorithm models full epidemic dynamics and can be easily upgraded to parallel version. We also propose novel algorithm for epidemic simulation spreading on networks called the FastSIR algorithm that has better average case running time than the Naive SIR algorithm. The FastSIR algorithm uses novel approach to reduce average case running time by constant factor by using probability distributions of the number of infected nodes. Moreover, the FastSIR algorithm does not follow epidemic dynamics in time, but still captures all infection transfers. Furthermore, we also propose an efficient recursive method for calculating probability distributions of the number of infected nodes. Average case running time of both algorithms has also been derived and experimental analysis was made on five different empirical complex networks.Comment: 8 figure

    Epidemic centrality - is there an underestimated epidemic impact of network peripheral nodes?

    Full text link
    In the study of disease spreading on empirical complex networks in SIR model, initially infected nodes can be ranked according to some measure of their epidemic impact. The highest ranked nodes, also referred to as "superspreaders", are associated to dominant epidemic risks and therefore deserve special attention. In simulations on studied empirical complex networks, it is shown that the ranking depends on the dynamical regime of the disease spreading. A possible mechanism leading to this dependence is illustrated in an analytically tractable example. In systems where the allocation of resources to counter disease spreading to individual nodes is based on their ranking, the dynamical regime of disease spreading is frequently not known before the outbreak of the disease. Therefore, we introduce a quantity called epidemic centrality as an average over all relevant regimes of disease spreading as a basis of the ranking. A recently introduced concept of phase diagram of epidemic spreading is used as a framework in which several types of averaging are studied. The epidemic centrality is compared to structural properties of nodes such as node degree, k-cores and betweenness. There is a growing trend of epidemic centrality with degree and k-cores values, but the variation of epidemic centrality is much smaller than the variation of degree or k-cores value. It is found that the epidemic centrality of the structurally peripheral nodes is of the same order of magnitude as the epidemic centrality of the structurally central nodes. The implications of these findings for the distributions of resources to counter disease spreading are discussed

    Statistical manifold embedding for directed graphs

    No full text
    We propose a novel node embedding of directed graphs to statistical manifolds, which is based on a global minimization of pairwise relative entropy and graph geodesics in a non-linear way. Each node is encoded with a probability density function over a measurable space. Furthermore, we analyze the connection between the geometrical properties of such embedding and their efficient learning procedure. Extensive experiments show that our proposed embedding is better preserving the global geodesic information of graphs, as well as outperforming existing embedding models on directed graphs in a variety of evaluation metrics, in an unsupervised setting
    corecore